Analytical Energy Storage System
2024-12-02
A residential energy storage system typically consists of three main components: a photovoltaic (PV) power generation system, an energy storage subsystem, and electrical loads. The PV system converts solar energy into direct current (DC) electricity. The energy storage subsystem includes a battery bank and a bi-directional inverter, responsible for the two-way conversion between DC and alternating current (AC) as well as battery charging and discharging management. The electrical loads are various household appliances that consume the AC power output from the system.
During operation, the DC electricity generated by the PV arrays is first converted into AC by the inverter to power the household appliances, with the surplus energy stored in the battery bank. During night-time or periods without solar irradiation, the battery bank discharges, and the electrical energy is converted into AC by the inverter to continuously supply the household loads. In case of a power deficit, the system can also purchase electricity from the utility grid as supplementary power. This system efficiently utilizes solar power generation, reduces peak loads on the grid, saves electricity costs, and can be regarded as a "micro-power plant" embedded in the household.
This integrated system, combining solar power generation, energy storage management, and intelligent energy utilization, is a feasible and promising direction for future residential energy applications.